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The Finite Element Method With 
Nonuniform Mesh Sizes for Unbounded Domains* 

By C. I. Goldstein 

Abstract. The finite element method with nonuniform mesh sizes is employed to approxi- 
mately solve elliptic boundary value problems in unbounded domains. Consider the follow- 
ing model problem: 

-Au = f in Q2, u =g on a, 
a 

+-u = o-I as r = Ixl -oo, a r rj 

where Qc is the complement in R 3 (three-dimensional Eucidean space) of a bounded set Q2 
with smooth boundary M, f and g are smooth functions, and f has bounded support. This 
problem is approximately solved by introducing an artificial boundary rR near infinity, e.g. 
a sphere of sufficiently large radius R. The intersection of this sphere with Oc is denoted by 
QRC and the given problem is replaced by 

auR 1 
-AUR = f in 2c, uR =g on , aR+_RUR = onFR. arr 

This problem is then solved approximately by the finite element method, resulting in an 
approximate solution uRh for each h > 0. In order to obtain a reasonably small error for 
u -uRh = (u - UR) + (UR - uR), it is necessary to make R large. This necessitates the 
solution of a large number of linear equations, so that this method is often not very good 
when a uniform mesh size h is employed. It is shown that a nonuniform mesh may be 
introduced in such a way that optimal error estimates hold and the number of equations is 
bounded by Ch-3 with C independent of h and R. 

1. Introduction. The finite element method has been studied extensively in 
connection with elliptic boundary value problems on bounded domains; see, e.g., 
[11-[31 and the references cited there. In particular, it has been shown that optimal 
error estimates hold under suitable assumptions on the differential operator and 
the finite element subspace. It is the purpose of this paper to show that, by 
employing the finite element method with an appropriately graded mesh near 
infinity, analogous results hold for unbounded domains. 

We consider the following model problem: 

(1.1) -u =f in Rc, u = g on a8 and a +- u = of-) asr= IxI-oo, 

where Rc is the complement in R3 (three-dimensional Euclidean space) of a 
bounded domain 2 with smooth boundary ag, f and g are smooth functions, and f 
has bounded support. We shall approximate this problem by introducing a sphere 
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388 C. I. GOLDSTEIN 

rR of sufficiently large radius R, as well as an approximate boundary condition on 
this sphere. We denote the region bounded by asi and rR by RR and replace 
problem (1.1) by 

(1.2) -XuR =f in 2R, uR =g on a2 and + 
I 

UR = O onlrR. 

Problem (1.2) may be approximately solved using the finite element method, 
resulting in an approximate solution uR for each h > 0. In order to obtain a 
suitable estimate for u -uRh = (u - UR) + (UR - uR), where u and UR satisfy (1.1) 
and (1.2), respectively, it will be necessary to make R large. In the usual finite 
element formulation with a uniform mesh size h, this results in an excessively large 
number of linear equations. We shall overcome this difficulty by grading the mesh 
systematically in such a way that the element mesh sizes become larger as the 
distance of the element from the origin increases. It will be proved that optimal 
error estimates for u - uRh hold (in the sense to be described in Section 3), while the 
number of equations is bounded by Ch-3 with C independent of h and R. The 
results will follow by combining certain rates of decay estimates for the derivatives 
of u with approximation theory. 

We now outline the remainder of the paper. In Section 2, we introduce our 
notation and describe the boundary value problems under consideration, as well as 
a variational formulation of problem (1.2). The main result of Section 2 is an 
estimate for u - UR in both the energy norm and the L2 norm. In Section 3, we 
describe the finite element method for solving problem (1.2) and obtain an estimate 
for UR - uR in the energy norm when a uniform mesh size is employed. We shall 
see that this yields a suboptimal error estimate for u - uR. In Section 4, we 
describe the mesh grading technique and obtain an optimal error estimate for 
u - uh in the energy norm. In Section 5, we obtain an optimal error estimate in the 
L2norm. The main results of the paper are embodied in Theorems 4.1 and 5.1. 

For other references, treating problems in unbounded domains using the finite 
element method, see [2, pp. 276-280] and [4]-[6], as well as additional references 
cited there. The mesh grading technique has been employed in [7]-[10] to treat 
domains with corners. 

2. The Boundary Value Problems. In this section, we shall investigate problems 
(1.1) and (1.2). We begin by defining some notation and formulating the given 
problem on an unbounded domain in R 3. We shall then formulate an approximate 
problem on a bounded domain and establish estimates for the difference between 
the solutions of these two problems. 

We shall employ the usual notation for Sobolev spaces. In particular, suppose 
that M is a nonnegative integer and B is a subset of R . (We shall obtain our 
results in R 3 although the arguments carry over to R 2 in a straightforward 
manner.) Set 

/ ~~~~~1/2 
IUIHM(B) ( IlD L2B) 

lal=M 
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and 

M 1/2 

11~~ ~~ uU1 H(B |u|H2(B) IIUIIHM(sB) = 

where a = (a1, a2, a3) with each integer aj > 0, lal = j-a, and Da denotes the 
weak derivative of the real-valued function u. Thus, j I HM(B) defines a seminorm, 
whereas 11 IIHM(B) defines a norm. Set HM(B) = (u: IIUIIHM(B) < oo). An arbitrary 
point in R 3 will be denoted by x = (X1, X2, X3) in Cartesian coordinates. We shall 
also employ spherical polar coordinates, (r, w, 9), defined by x1 = r sin 9 cos w, 
x2 = r sin 9 sin w, and X3 = r cos 9. 

We next define our boundary value problem as follows. Let Q denote a bounded 
domain in R3 with C? boundary ag. Denote the complement of Q2 = Q U ag by 
Qc. We shall also require the sets SR and OR given by SR = {x: IxI < R) and 
OR = QC n SR. Suppose that g E C c8(aQ), f E C ?(9C), and f has bounded sup- 
port. (For the sake of simplicity, we are assuming more smoothness of f, g and, au 
than necessary.) Throughout the paper, we shall assume that R is sufficiently large 
that Q c SR and supp(f) C Q. Our aim is to solve the boundary value problem 
given by (1.1). (The results and arguments of this paper go through without 
essential change if the Dirichlet boundary condition on au is replaced by the 
Neumann condition.) 

It suffices to consider the following boundary value problem: 

(2.1) -Au =f in 2C, u = O on a2 and au+-u = o-) as r -* oo. 

To obtain (2.1) from (1.1), we observe that g may be extended to a smooth function 
G with bounded support. If v satisfies (1.1), we set u = v - G and observe that u 
satisfies (2.1) with f replaced by f + AG. We now establish some important 
properties of the solution u of (2.1) that will be useful throughout this paper. 

LEMMA 2.1. Suppose that u E C oO(2C) satisfies (2.1). Then for r = [xl sufficiently 
large and each multi-index a, we have 

00 
aa(w, 9) 

(a) Dxau(x) =2 
n__ (b) Du()(dn=l rn+ a 

(b) IaDx(X)n < | aU 
2 

dsx + n Ifj2 dx), 

and 

8u(x) 1 2 c au 2 2x 
(c) + - U(x) < ln dx + If1 dX 

The constant C is independent of r and u. 

Note that we shall often use the same letter C to denote different constants when 
there is no danger of confusion. 

Proof. (a) We may apply (2.1) and integration by parts to see that 

(2.2) u(x) = 
I 

Iu(xA) dsyx - fIf(x') dx') Vx E Qc, 
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where p = [x - x'l, x' = (r', w', 9'), and n' is the outward directed normal to au at 
the point x'. It may be seen (as, e.g., in [11]) that 

(2.3) 1= 2 

r 2r-cos 4 + -r 2 

r \r 
Here 4, is the angle between the rays joining x and x' to the origin, so that 
cos 4, = cos 9 cos 9' + sin 9 sin 9' cos(w - w'). Since f has bounded support, we 
readily obtain (a) using (2.2) and (2.3). 

(b) It is clear that we may differentiate under the integral sign in (2.2). Hence, (b) 
follows from (2.2), (2.3), and the Schwarz inequality. 

(c) We again apply (2.2), (2.3), and the Schwarz inequality to see that (c) holds. 
Q.E.D. 

We next establish the well-posedness of problem (2.1). 

LEMMA 2.2. There exists a unique solution u E C '(SC) of problem (2.1). 

Proof. The existence of a solution u of (2.1) is well known and may be 
established using the method of integral equations; see, e.g., [12] and the references 
cited there. The smoothness of u follows from the smoothness of f and au using 
standard regularity theory for elliptic differential equations, [13]. The uniqueness of 
u may be established as follows. Suppose that f = 0 in (2.1) and apply integration 
by parts on OR with R large to obtain: 

O= -uAu dx=| Vu uj dx- u-d. 
R R ~~~~~~~SR r 

It follows from Lemma 2.1(a) that 

u(x) = ?(!) and ar = - ) as r -oo. 

Hence, we may let R oo to see that fJcIVUj2 dx = 0. Thus, u is a constant in Qc 
and u = O(l/r) as r oo, so that u = 0 in Qc. We have thus proved uniqueness. 
Q.E.D. 

Note. Even if f 4 Co(2C), u(x) is still infinitely differentiable outside of the 
support of f. 

As we indicated earlier, we shall not approximate the solution of (2.1) directly 
but instead shall introduce an intermediate problem on a bounded domain. We 
thus consider the following problem: 

(2.4) -AR = f in OR, Ur = 0 on aM +_UR= 0 on aSR. 
afr r 

In view of the last equation in (2.4), it follows from Lemma 2. 1(c) that 

max a 
(u(x) - UR(X)) + (u(x) -UR(x)) 

= max ar + 
I 

u(x) 
25)xEc-asR arr X EaSR 

a 

< 2 fsx+ Ifl2dx). 

Our main goal in this section is to establish mean-square estimates for u - UR and 
V(u - UR) over QR. First, however, we prove that problem (2.4) is well posed. 
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LEMMA 2.3. There exists a unique solution uR E C'(QR) of (2.4). 

Proof. First we prove uniqueness. Suppose that uR satisfies (2.4) with f = 0 and 
note that 

12 dX3uR =f URUR dx = IvURI d ( dR 
R R O~~~~~~R ar 

=L| |VUR2 dx +- I URI2 dSx. a R R RSR 
Hence, UR is a constant in OR and UR = 0 on aSR. Thus, UR = - in QR and we have 
proved uniqueness. The remainder of the theorem now follows from [13, Theorem 

2.1], in view of the smoothness of f andaQ. Q.E.D. 
In order to apply the finite element method to problem (2.4), we first express this 

problem in a variational formulation. Set 

HR= {u: u E H'(QR)' u = on 3} 

and define 

aR( u V) Vu Vv dx + UV dSx VU, V E HRE, 
R\'JJ~ RY uvSR V VH 

(2.6) and 
(2.6) {1 11HR SE 

||U|| HE = (aR(u, U))12 VU E H. 

LEMMA 2.4. (a) There exists a constant C(R) such that 

IIVIIH1(0R) < C(R)IIvIIHE V E HRE, 

where C(R) is independent of v (but depends on R in general), 
(b) there exists a unique function u1 E HRE satisfying the equation 

aR(u, v) = (f, v) Vv E HRE 

and 
(c) u1 = uR, where uR is the solution of (2.4). 

Proof. (a) This follows from Rellich's theorem as in [2, Theorem 1.2.1]. 
(b) This follows readily from (a); see, e.g., [2] or [3]. 
(c) This follows easily from (2.4), (2.6), and (b) using integration by parts. 

Q.E.D. 
We are now ready to obtain estimates for eR(x) = u(x) - uR(x), where u and uR 

satisfy (2.1) and (2.4), respectively. For convenience, we set 

(2.7) wR(x) = + Rj)u(x) for each x in aSR. 

LEMMA 2.5. Suppose that u satisfies (2.1), uR satisfies (2.4), and eR = u-UR. Then 
there exists a constant C, independent of R, such that 

(a) lIeRII2 < | ds + 2IfI2 dx), 

and 

(b) f IeRI2 dx < aU ds2 +f If I2 dx (b) 
an~~x?~.- - dsx 

/ 
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Proof. (a) It follows from (2.1), (2.4), and (2.7) that 

(2.8) 1 e2dsx e eR aeR d d 
. R SR 

R 
SR 

R ar aSReRWdS 

We apply the Schwarz inequality and Lemma 2.1(c) to the last term in (2.8) to 
deduce 

|eRw dsx| < e{ 2 dsx 2{W dsx) SR S R SR 

(2.9) C ( 2 1/2 aUn 2 f dX 1/) 

cc au 2 

R3 (aul n |dsx + |f 2dx) + e( e2dsx, R3 y2an R R 

where e > 0 is arbitrarily small and C, depends on e but not on R. Applying (2.1), 
(2.4), and integration by parts, we see that 

(2.10) | IVeRI2dxCf eR ds =- - aeR d 0. f21) s 
eRA dx -s e0. 

R ~~~SR X R 

Finally, we combine (2.8)-(2.10) to conclude that 

f IVeRI2 dx + RI e2dsX IVeRI2 dx- e eR dsx + f ew dsx 

R R( p a R f dx)R+RJ3eRds 

We may now choose e = in the last estimate to obtain (a). 

(b) To begin with, we observe that 

L IV(reR)I2 dxf IrVeR + eRVrI2 dx 
uR uR 

- f (r2IVeRI2 + eRIVrI2 + 2reRVr rVeR) dx. 
R 

Since IVrI = 1, we deduce 

eR dx = 
I 
IV(reR) 2dx d r2IVeRI2 dx -f 2reRVr VeR dx 

(f< IV(reR) dx+ eR dx + C r VeR1 dx. 
uR R uR 

Using (a), we obtain 

(2.12) LRr2IVeRI2 dx R2 IVeRI2 dx - (aC 2 a 2) 
Combining (2.1 1) and (2.12), we see that 

(2.13) 1 e2 dx < 
C | aU 

dsx + |f dx + 2 IV(reR)12 dx. 
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We next estimate the last term in (2.13). We apply integration by parts to obtain 

(2.14) I V(reR)12 dx= reR(-LX(reR)) dx + ds).reRare ) X 

To estimate the last term on the right, we observe that r = R on aSR and we 
employ (2.8), (2.9), and (a) to conclude that 

areR (reR) dsx = reR + r eR ) dsx = 
R 2eRwR dsx 

SR ar ~ ~ SR ar aSR 

(2.15) R2( ( a dsx2 + dx+ e dsx 

2 aU 
dsx + f2 dx). 

Finally, we estimate 

f reR(-A(reR)) dx = f reR(eR(-Ar) + r(-AeR) - 2Vr VeR) dx. 
uR uR 

Noting that AeR = 0 and Ar = 2/r, we deduce 

(2.16) f reR(-A(reR)) dx = -2f (eR + reRVr VeR) dx. 

Using (a), it follows readily that 

(1 2reRVr VeR dx < 2 eR dx + C r2 IVeR 2dx 

<2J eR dx + - | dsx +J fdx). 

Combining (2.14)-(2.17) with (2.13), we now conclude that 

es2 e dx < R l aU l2 + f2 dX) 
fRd 2 ~ R / 

This completes the proof of the lemma. Q.E.D. 

The following result enables us to simplify the estimates in Lemma 2.5. 

LEMMA 2.6. Suppose that u satisfies (2.1). Then there exists a constant C, indepen- 

dent of u, such that 

2 dsX <cf f2 dx. 

Proof. Without loss of generality, we may assume that Q c S1 and supp(f) c S1. 

Let X denote a cutoff function satisfying the following conditions: X e C(2c), 

X 1 in a neighborhood of 3Q and x 0 in a neighborhood of aS1. Set 2, = Qc 

n S1. Since xu = 0 on ai and on aSI, we may employ (2.1), the theory of elliptic 
differential equations and the triangle inequality, to deduce 

2a 2 a (XU) d2 CdIXuCII2(XUI ) 
a dsx an H2(J2) 

< CII_A(XU)112 2(g) < C(IIfIj2 2(C) + IIUII 2 (01)). 
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Since u = 0 on 3Q, it follows that 

fIU12 dx < Cf IVU12 dx 

(see, e.g., [2]). We thus obtain 

(2.18) aU 2 
dsx < C(| IVu12dx +f f2dx) 

Now suppose that Ro is a fixed large positive number and UR. satisfies (2.4) with 
R replaced by RO. Choosing Ro sufficiently large, we may apply Lemma 2.5(a) to 
obtain 

(2.19) f IV(U-UR)12 dx < 
aU 2 

dyx + f2dx), 

with C independent of Ro. Again, employing elliptic regularity theory, we see that 

(2.20) 11 UR011 H(S1R0) < CR0jj f 1 L2(QR0) 

Combining (2.18)-(2.20), we conclude that 

(2.21) aU dsx < KRO f2 dx + C ?auQ 
2 

dX 

where KRO depends on Ro but C is independent of Ro. We now choose R3 = 2C to 
obtain the lemma. Q.E.D. 

We may now combine Lemmas 2.5 and 2.6 to immediately deduce the main 
result of this section. 

THEOREM 2.1. Suppose that R is sufficiently large and that u and UR satisfy (2.1) 
and (2.4), respectively. Then there exists a constant C, independent of R and u, such 
that 

(a) f |V(U _ uR)12 dx + R jI (u- UR)2 dsX < RC f dx, 
R 

R SRRRS3 

and 

(b) f(u - UR)2 dx < Rf f2 dx. 

Remark 2.1. There has recently been developed, [14], a hierarchy of approximate 
boundary conditions at infinity for calculating the solution of problems such as 
(2.1). The construction of these boundary conditions is based on the series 
expansion for u given in Lemma 2.1(a). The first boundary condition in this 
hierarchy is given by au/ar + u/r = 0 on aSR and corresponds to the outer 

boundary condition in problem (2.4). The arguments of this paper appear to be 
applicable to higher order boundary conditions as well, although this will not be 
considered here. 

We also observe that the following error estimate was proved in [141: 

(2.22) ||U - URIILO(nR) < 2 
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where C is independent of R. The proof of (2.22) is based on a version of the 
maximum principle dealing with impedence boundary conditions. Since we are 
analyzing the finite element method, which is based on a variational principle, the 
mean-square and energy estimates of Theorem 2.1 are more appropriate to the 
purposes of this paper. 

3. The Finite Element Method. In this section we shall construct an approximate 
solution uR' of (2.4) using the finite element method with element mesh size of order 
O(h) on 2R. We begin by considering a discretized version of the variational 
problem in Section 2, obtained by replacing HE by a finite-dimensional subspace. 
We shall then describe the finite element method and estimate the error 
jj u - jj11R, where u satisfies the original problem (2.1). We shall see that this 
error estimate is suboptimal, thus motivating the last two sections of the paper. 

We begin with the following result. 

LEMMA 3.1. Suppose that R is sufficiently large, UR satisfies (2.4), aR(, ) and HRE 
are defined by (2.6), and M is a finite-dimensional subspace of HRE. Then, 

(a) there exists a unique solution UR E M of the equation 

(3.1) aR(uR, v) = (f, v) Vv E M, 

and 

(b) lIuR - URIIHE = infXEMIIuR - XIIHR* 

The proof of Lemma 3.1 follows easily from Lemma 2.4(a) using the fact that UR 

is the projection of UR onto M with respect to the inner product defined by aR(, ); 

see, e.g., [2] or [3]. We now describe how the finite element method may be 
employed to approximately solve problem (2.4). We begin by replacing HRE by a 
one parameter family of finite-dimensional subspaces Sh, defined for each h E 
(0, oo). The subspaces Sh are typically obtained by subdividing QR into simple 
subsets (elements), denoted by th, with diameter of order O(h). Sh may then be 
defined as the subspace of H consisting of all continuous functions vh such that 
the restriction of v h to each element th belongs to some appropriate class of 
functions, denoted by F. For example, F may consist of all polynomials of degree 
less than K in a convenient coordinate system for a fixed integer K not less than 2. 

Using Lemma 3.1, we may now define the finite element approximation URh E Sh 

to the solution of problem (2.4) as the unique solution of 

(3.2) aR(uRh, vh) = (f, vh) Vvh e Sh. 

We shall require certain approximation properties of our finite element spaces. 
Specifically, we assume that 

inf IV(v - X)12 dx < Ch2s-2JvI 2() 
XE Sh Q, 
and 

inlf 
I V X| dx < Ch2s lIVI 2(R 

for each v E HK(&2R) and each integer s E (2, K], where K is an integer not less 
than 2 and Q' is an arbitrary subset of OR' The constant C is independent of Q', h, 
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and v. It is important to note that only derivatives of order s appear on the 
right-hand side of these estimates. The estimates in (3.3) hold for typical finite 
element spaces; see, e.g., [1]-[3]. 

There is another condition, typically satisfied by finite element subspaces, that 
will be useful throughout this paper. Let Q' denote an arbitrary subset of OR' Set 

ii = {X E S': x(x) = 0 for x E Q'} and denote the orthogonal complement of 

SuZ by SQT = Sh - St. We assume that there exist constants, C1 and C2, indepen- 
dent of h E (0, 1] and Q', such that 

(3.4) Clh-3 meas(S') < dim(SQ,) < C2h-3 meas(Q'). 

Here meas(Q') denotes the measure of Q' and dim(SQh,) denotes the dimension of 
the finite-dimensional subspace S2. 

Remark 3.1. We observe that since Sh C HE, functions in Sh must vanish on aQ. 

This will cause problems, in general, when ag does not have a simple shape. (The 
boundary condition on aSR is natural. Hence, no boundary condition needs to be 
imposed on aSR.) Methods have been developed for overcoming the difficulties 
associated with essential boundary conditions; see [1] or [2]. For example, au may 
be approximated by surfaces with simple shapes or the finite element method may 
be generalized. These techniques for treating essential boundary conditions on aQ 
will not affect the arguments of this paper. For the sake of simplicity, we shall 
consider the usual finite element formulation described above. See [1]-[3] for more 
detailed descriptions of the finite element method. 

We next estimate the error u - uRh in the energy norm. 

THEOREM 3.1. Suppose that the hypotheses of Lemma 3.1 hold with M replaced by 

SRh for h E (0, 1], condition (3.3) holds with K > 2, and u satisfies (2.1). Then there 
exists a unique solution uRh E Sh of (3.2) and a constant C, independent of u, h, and 
R, such that 

(3.5) || - URIIHE < C(R 3/2ii f|L2(QC) + hK-II U HK(R)) 

Proof. We may apply Lemma 3.1 and Theorem 2.1(a) to see that there exists a 
unique solution uR E Sh of (3.2) such that 

iiU - URhiiHE 1 iU - URiiHE + iiUR - URiiHE 

< CR /23If2 iL2(Uc) + inf IIuR XIIHE fiL 
XGEShiUR 

XH 

< 2 CR 3/2ii fiiL2(QC) + inf IIu - XJJHRE 
X E Sh 

Combining this estimate with (3.3), we have proved the theorem. Q.E.D. 
We may obtain an L2 estimate for u -uh in an analogous fashion using 

Theorem 2.1 and a duality argument. We postpone the details of this argument 
until Section 5 since both the energy and L2 estimates are suboptimal when a 
uniform mesh size is employed, as in this section. We shall demonstrate the 
suboptimality of estimate (3.5) as follows. First observe from (3.5) that in order to 
obtain the estimate 

(3.6) ||IU - URh||HE < ChK1, 
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it suffices to make R sufficiently large that 
R-3/2= K-1 (3.7) R - hKl 

Estimate (3.6) does not tell the whole story since the number of equations to be 
solved to obtain uh is expressed in terms of dim(Sh). We define a new parameter H 
by 

(3.8) H = (dim(Sh))'/3. 

H is often taken as the relevent parameter to measure convergence when using the 
finite element method; see [1]. In view of assumption (3.4), we see that 

(3.9) Clh-3R3 < dim(Sh) < C2h-3R3. 

It follows from (3.7) that R = h-2(K- 1)/3. Hence we see, using (3.8) and (3.9), that 

(3.10) C-l/3h(2K+1)/3 < H < Cl1/3h(2K+1)/3 

We may thus employ Theorem 3.1 to deduce 

COROLLARY 3.1. Suppose that (3.4) and the hypotheses of Theorem 3.1 hold. Then 
there exists a constant C, independent of h, such that, for R = h2(K- 1)/3, we have 

IIu - uhiIHE < CH3(K-l)/(2K+ 1) 

Remark 3.2. Suppose that we replace (2.1) by the following problem 

(3.11) (-A + X)u = f in Qc, u = 0 on aQ, u E L2(C), X> 0,f E Co,(UC). 

It can then be shown that Dau(x) = O(el1xI) for some a > 0 and all jxl sufficiently 
large. From this, it may be seen, using the arguments and assumptions of this 
section, that 

IIu - uRhJJHE < CeHKILe for arbitrary E > 0, 

with uRh defined as before. An analogous estimate was obtained by Babuska in [1] 
and [4] for a problem similar to (3.1 1). 

We shall refer to the following estimates as optimal for problems in unbounded 
domains: 

(3.12) IIU - URI|HE S CH 

and 

(3.13) hiU - U ihL2(B) < CHK, 

where B is a fixed bounded subset of Qc. (For problems on bounded domains, 
optimality is generally defined by estimates such as (3.12) and (3.13).) We see from 
Corollary 3.1 that the energy estimate is considerably weaker than optimal for 
problem (2.1). It may also be readily seen that L2 estimates are suboptimal when 
uniform mesh sizes are employed. We shall show in Sections 4 and 5 that the 
optimal estimates (3.12) and (3.13), respectively, hold when the mesh is graded 
systematically in such a way that the mesh sizes of elements "near infinity" become 
large. 

4. Energy Estimates. It is our purpose, in this section, to prove an optimal energy 
estimate of the form (3.12). We shall accomplish this by replacing the family of 
finite element spaces Sh, described in Section 3, by a new family of spaces Sh 
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obtained by a mesh grading process to be described below. We begin by construct- 
ing the family of spaces Vh in such a way that the following approximation 
estimate holds: 

(4. 1 ) inf IIU - XIIHR < CHK1, 

where H is defined by (3.8) and u satisfies (2.1). We shall then combine this with 
the results of Sections 2 and 3 to obtain our optimal error estimate. At the end of 
the section we shall illustrate the mesh grading process with respect to a specific 
example. 

To begin with, suppose that we have a family of finite element spaces Sh C HE 
satisfying conditions (3.3) and (3.4) for each h E (0, mo). Hence, in particular, we 
assume that UR is partitioned into a union of elements th with diameter of order 
0(h). Functions in Sh are continuous and are such that their restriction to each th 
belongs to a simple class of functions, denoted by F, as described in Section 3. We 
now define a new subspace Sh c HE by systematically increasing the mesh sizes of 
elements as their distance from the origin increases in such a way that estimate 
(4.1) will hold. 

To be precise, we define 

Sj = {x: 2j1 < |x| < 2j), j = 1, 2, . * *, JR~ 

with JR to be specified below. Without loss of generality, we may assume that a 
and the support of f are contained in the unit sphere. Set Q = S. n QR, j = 

1, 2, ...., JRJ and QO = QR - U A1R0. We may obtain a new partition of QR by 
assuming that elements t0 in each annular region Q have diameter of order 0(hj), 
with hj to be determined shortly, j = 0, 1, ... , JR. We now define Sh to consist of 
those continuous functions X E H E such that X restricted to each t ̂ ' belongs to F. 

In order to satisfy (4.1), we determine the parameters hj as follows. Using (3.3), 
we may choose a function Xt E S!' such that 

f RIV(u - 
X cx < Ch.K 2u=0 1 '4j 

(4.2) and 

[~~is ju - XJRI 2K- I 1 | 2 ~~~~~hj 2 
R SR R IIK~) 

where C is independent of hj, u, and R. We shall next apply Lemma 2.1. For the 
sake of simplicity, we assume in the remainder of this paper that Lemma 2.1 holds 
for r = Ixj > 1. We employ Lemma 2.1(b) to see that 

(4.3) JIUI2K(QR) < Cf r-2(K+1) dx < C2-(2K-l2i 

In view of (4.2) and (4.3), we wish to choose hj such that 

(4.4) h 2K-22-(2K-I) < h2K-2 

Hence, we set 

(4.5) ho = h and hi = 2KK'h with I < K' < K-1/2 
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We next choose JR so that 2J = R. For the reasons given in Section 3, we define R 
by (3.7). We thus have 

(4.6) R = h-2(K-1)/3 

so that JR = log2(1 /h)2(K - 1)/3. Since JR is not necessarily an integer, set 

(4.7) JR =[JR] + 1 =[10l2( - ] + 1, 

where [JR] denotes the greatest integer less than JR. Set a = JR- J and note that 

(4.8) 2JR =2?R, 0<a 1. 

Combining (4.5), (4.6), and (4.8), we readily deduce 

(4.9) hjR < R 
for h sufficiently small. 

We now let X denote the function in Sh such that X, restricted to jR, is equal to 
where satisfies (4.2), = , 1,... JR. Hence, we may combine (4.2), (4.3), 

(4.5), and (4.9) to obtain 

JR 

|| u - XIIHE < C hK-12-(K-1/21 
j=O 

(4.10) JR 
S C 2 h 12Kl(K1)2-(K1/2) 6 

j=O 

where h is sufficiently small and the constant C is independent of h. Furthermore, 
we may apply (3.4) and (4.5) to deduce 

JR JR 

dim(Sh) < , dim(?^) 6 C E h) meas(Q) 
j=O j=O 

JR JR 

(4.11) 6C hj3(2j)3 -3 + - h3(2-K')3(2j)3 
j=o j=l 

JR 

6 Ch-3 - (23(K'- 1)y (Ch-3 
j=O 

where h is sufficiently small and the constant C2 is independent of h. In view of 
(3.4) and (4.5), we also readily obtain 

(4.12) dim(Sh) > Clh 

with h sufficiently small and C1 independent of h. Combining (3.8), (4.11), and 

(4.12), we deduce 

(4.13) Klh ? H < K2h, 

for h sufficiently small and suitable constants K1 and K2 independent of h. Finally, 
we combine (4.10) and (4.13) to conclude that (4.1) holds. 

We next apply Lemma 3.1 to obtain a unique function URh E Sh satisfying 

(4.14) aR(uR, V') = (f, v') Vv EV 
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Applying the triangle inequality, Theorem 2. 1(a), and Lemma 3.1, we see that 

(4.1) IU - URI|HRH IIU - URIIHR + IIUR - URIIHR 

6 CR32 + inf IIUR - XIIHE < 32CR + inf II u _ Xil HE. 

xeSh XESh 

Finally, we combine (4.1), (4.6), and (4.13) with (4.15) to obtain the main result of 
this section. 

THEOREM 4.1. Suppose that Sh is the subspace of HE defined above with R= 

h-2(K- 1)/3 u satisfies (2.1), and ih satisfies (4.14). Then there exists an ho E (0, 1] 
such that, for h E (0, ho], we have 

||u - URhIIHE S CHKl, 

where C is independent of h and H is defined by (3.8). 

Remark 4.1. Observe that we assumed R and h to be related by (4.6) in order to 
obtain an optimal error estimate for u - iR. However, the mesh grading process 
was defined independently of R. The main feature of this process is embodied in 
the following estimate: 

diam(T) < hd(K l/2)/(K I) on each annulus jR 
where d is the distance of the element T from the origin. Note that if the mesh size 
is roughly doubled on successive annuli, so that hj = 2'h, then dim(Sh) = 

O(h-3 log hl) instead of O(h-3). 

Remark 4.2. The results of this paper may be extended in various directions. For 
example, these methods may be applied to problems in scattering theory by 
replacing the Laplace operator by the Helmholtz operator, given by -A - K2. In 
this case, the condition at infinity is replaced by a suitable radiation condition. 
There are, however, certain technical difficulties associated with the indefiniteness 
of the relevent bilinear form. We may also treat variable coefficient perturbations 
of the Laplace and Helmholtz operators by the present methods, provided the 
perturbations have bounded support. In a subsequent publication, we shall deal 
with these and other extensions of the present results (such as LX error estimates). 
Finally, we mention that numerical computations demonstrating the theoretical 
results of this paper will appear elsewhere. 

Example 4.1. In order to clarify the finite element method described above, we 
consider an axially symmetric problem in the exterior of the sphere Q= { x: 

lxi < 2} Using spherical polar coordinates and the axial symmetry, we may 
replace QR = {X: x Ix < R) by the following two-dimensional domain: 

QR= {(r,0): 2 ? r <R, 0 <0 <() 

The solution UR of problem (2.4) now satisfies the following boundary conditions 
on MR: 

1 aUR 1 auR 
uR =O onr a,R +kR =o on r =R, and a- = 0 at 0 = 0,7T. 

The last condition is due to the axial symmetry. The differential operator -A as 
well as the bilinear form aR(, ) are readily expressed in polar coordinates. 
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We now construct a finite element space Sh consisting of piecewise linear 
functions defined on QR. We first partition QR into triangles of maximum diameter 
h, as shown in Figure 4.1, taking a uniform mesh spacing in the r and 0 directions. 
Next, let Sh consist of all functions X(r, 0), defined on QR' satisfying the following 
conditions: 

(i) X is continuous on UR, 
(ii) X is linear on each triangle, 

and 
(iii) X = O on r 2 

The space Sh may be constructed using a nodal basis of Lagrange type in the usual 
way; see, e.g., [2] or [3]. It may be readily seen that Sh satisfies (3.3) (with K= 2) 
and (3.4). In Figure 4.1, we set hr = ho = 2-3 and ho = o/10. 

te o 

r=1/2 1 2 4 

FIGURE 4.1 (Uni form Mesh) 

We next define a new finite element space 9h in accordance with the mesh 
grading procedure described above; see Figure 4.2. For simplicity, suppose that 
supp(f) c {x: lxi < 1). We set UR =X: ' < lxl <~ 1), Qi-.j = {x: 2j-' <jIxj < 

=i 1, 2, . .. ,JR, h, = I<1, and ho = 2-i. We increase the mesh size in the r 
direction as described above. Hence, we set hjr = 23j/2h_~ j 1-0,~.. J~*~R. Using 
(4.6) and (4.7), respectively, we set R = 2 2and JR = 2. FunctionS in 9 h are now 
defined with respect to this partition in thie same manner as functions in Sh. 
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7r 

11l2 24 

FIGURE 4.2 (Nonuniform Mesh) 

5. L2 Estimates. In this section, we shall establish the following optimal mean- 
square error estimate: 

(5.1) flu - 12(B) < CHK, 

where B is a bounded subset of OC and i~R is defined by (4.14). Note that u, H, and 
K are defined as before. We first show that, by combining the results of Sections 2 
and 3 with a duality argument, we may reduce our mean-square estimate to an 
approximation estimate. We shall then show that the mesh grading process de- 
scribed in Section 4 yields our optimal mean-square error estimate. 

We may assume without loss of generality that 02 and the support of f are 
contained in the unit sphere and Lemma 2.1 holds for r > 1. In order to obtain 
estimate (5.1) we shall require the following lemma. 

LEMMA 5. 1. Suppose that B is a bounded subset of Q2C, R is sufficiently large, uR 

satisfies (2.4), aR( , ) and HR' are defined by (2.6), M is a finite-dimensional subspace 
of HRF, and/R C M satisfies the equation 

(5.2) aR(R, V) = (f, V) VV c- M I 

Then 

uR-U'RIIL 2(B) < inf IIUR -XIJHkE sup Inf 1VIR - 4') HEj 
Fx C U M 4.2 C(B) (IHL 2(B) 

Ms R 

where eR and r are related by 

(5.3) -||U in R (D 0 onaU and DR 
(R = 0 on aSR. where RB is aaoudesbstf an isdeidr R 
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Proof. It follows from the definition of the L2 norm that 

(5.4) IIUR URIIL2(B) = SUP (UR - )t 
GE Co-(B) IIOIIL L2(B) 

Combining (2.4), (2.6), (5.2), (5.3), and integration by parts, we see that 

(UR UR,4)=aR(UR UR (DR) = aR(UR UR -U R A) ERM. 

Hence, we may apply the Schwarz inequality to obtain 

(5.5) (uR - UR, 0) < 11 UR - UR HE ifnf II?R -11 HR UR UR 
~~~R 4JJEM 

IR 4IH,E 

Finally, we may employ Lemma 3.1(b), (5.4), and (5.5) to obtain the lemma. 
Q.E.D. 

We next apply Lemma 2.5(b) and Lemma 5.1 to the family of finite element 
spaces gh defined in Section 4. Hence, we assume that hj < 2KIh, j = O, 1, ..., 4 
with K' defined in (4.5). Now we make the additional assumption that each hj < R. 
Set 

(5.6) R -1/2 = h K 

The integer JR may be calculated as in Section 4 using (5.6). We thus obtain 
JR = 1log2(1/h)2K1 + 1. It also follows, as in Section 4, that dim(Sh) = O(h-3) for 
h sufficiently small. 

We recall that iiR is defined as the unique solution of Eq. (4.14). Using the 
triangle inequality, we obtain 

I hU - UR IIL2(B) < IIU URIIL2(B) + IIUR - URIIL2(B). 

We thus see, from Lemma 2.5(b) and (5.6), that 

(5.7) |iU - URIIL2(B) < CR /2 + IIUR - UR11L2(B) S ChK + IIUR - URIIL2(B). 

We next apply Lemma 5.1, with M replaced by sh, to the last term in (5.7). In view 
of this, our goal is to prove the following two estimates: 

inf IIUR _ 
XIIHRE < ChK 

XE ?h 

and 

inf II R - 'I IHR < ChIIcpIL2(B). 
p E Sh 

Employing Theorem 2.1(a) and the triangle inequality, we readily see that it 
suffices to prove 

(5.8) ilnf IIU - XIIHR < ChK, 
XE ?h 

and 

(5.9) inf I|ID - XIIHRE < ChII4IIL2(B), 
1 GE ?h 

where 1D satisfies 

(5.10) -M(D = 4 in RC, D = 0 on aQ and 
a 

+-4 = o-I as r -- oo. 
a r rJ 

The proof of estimate (5.8) follows as in Section 4. To prove (5.9), we may apply 
Lemma 2.1(b), Lemma 2.6, and the arguments of Section 4 (with K replaced by 2). 
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We thus obtain the following sufficient condition for (5.9) to hold: 

(5.11) hj < 2 K Jh, j = 1, 2, . . . , JR, with K-' < K" < 
3 

Since 2K'j S 2K'j, it is readily seen that (5.11) holds. Combining (5.7) with Lemma 
5.1, (5.8), and (5.9),we obtain our main result as in Section 4. 

THEOREM 5.1. Suppose that B is a bounded subset of Qc, 5h is the subspace of HR 
defined in Section 4 with R = h-2K, u satisfies (2.1), and ih satisfies (4.14). Then 
there exists an ho E (0, 1] such that, for h E (0, ho], we have 

|U - UR|IIL2(B) < CHK, 

where C is independent of h and H is defined by (3.8). 
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